skip to main content


Search for: All records

Creators/Authors contains: "Silpa, S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    The Seyfert galaxy NGC 2639 was known to exhibit three episodes of active galactic nuclei (AGN) jet/lobe activity. We present here the upgraded Giant Metrewave Radio Telescope (uGMRT) 735 MHz image of NGC 2639 showing a fourth episode as witnessed by the discovery of ∼9 kpc radio lobes misaligned with the previously known ∼1.5 kpc, ∼360 pc, and ∼3 pc jet features detected through the Karl G. Jansky Very Large Array (VLA) and the Very Long Baseline Array (VLBA), respectively. Using the spectral ageing software brats, we derive the ages of the ∼9 kpc, ∼1.5 kpc, and ∼360 pc episodes to be, respectively, $34^{+4}_{-6}$, $11.8^{+1.7}_{-1.4}$, and $2.8^{+0.7}_{-0.5}$ Myr, and conclude that minor mergers occurred 9−22 Myr apart. NGC 2639 shows a deficit of molecular gas in its central ∼6 kpc region. The GALEX NUV image also shows a deficiency of recent star formation in the same region, while the star formation rate surface density in NGC 2639 is lower by a factor of 5−18 compared to the global Schmidt law of star-forming galaxies. This makes NGC 2639 a rare case of a Seyfert galaxy showing episodic jet activity and possible signatures of jet-driven AGN feedback.

     
    more » « less
  2. ABSTRACT

    We present a comprehensive study of the molecular gas properties of 17 Type 2 quasars at z < 0.2 from the Quasar Feedback Survey (L$_{\rm [O~{\small III}]}$ > 1042.1 $\rm ergs^{-1}$), selected by their high [O iii] luminosities and displaying a large diversity of radio jet properties, but dominated by LIRG-like galaxies. With these data, we are able to investigate the impact of AGN and AGN feedback mechanisms on the global molecular interstellar medium. Using Atacama Pathfinder EXperiment and ALMA ACA observations, we measure the total molecular gas content using the CO(1-0) emission and homogeneously sample the carbon monoxide (CO) spectral line energy distributions, observing CO transitions (Jup  = 1, 2, 3, 6, 7). We observe high r21 ratios (r21  = L’CO(2-1)/L’CO(1-0)) with a median r21  = 1.06, similar to local (U)LIRGs (with r21 ∼ 1) and higher than normal star-forming galaxies (with r21 ∼ 0.65). Despite the high r21 values, for the seven targets with the required data, we find low excitation in CO(6-5) & CO(7-6) (r61 and r62 < 0.6 in all but one target), unlike high-redshift quasars in the literature, which are far more luminous and show higher line ratios. The ionized gas traced by [O iii] exhibits systematically higher velocities than the molecular gas traced by CO. We conclude that any effects of quasar feedback (e.g. via outflows and radio jets) do not have a significant instantaneous impact on the global molecular gas content and excitation and we suggest that it only occurs on more localized scales.

     
    more » « less
  3. ABSTRACT

    We present results from a combined radio polarization and emission-line study of five type 2 quasars at z < 0.2 with the Karl G. Jansky Very Large Array (VLA) B-array at 5 GHz and Hubble Space Telescope (HST) [O iii] observations. These five sources are known to exhibit close association between radio structures and ionized gas morphology and kinematics. Four sources (J0945+1737, J1000+1242, J1356+1026, and J1430+1339) show polarization in the current data. J1010+1413 is the unpolarized source in our sample. We detect $0.5{-}1{{\ \rm per\ cent}}$ fractional polarization in the radio cores and a high fractional polarization ($10{-}30{{\ \rm per\ cent}}$) in the lobes of these sources. The morphological, spectral, and polarization properties suggest a jet origin for radio emission in J0945+1737, J1000+1242, J1010+1413, and J1430+1339 whereas the current data cannot fully discern the origin of radio emission (jet or wind) in J1356+1026. An anticorrelation between various polarized knots in the radio and [O iii] emission is observed in our sources, similar to that observed in some radio-loud AGN in the literature. This suggests that the radio emission is likely to be depolarized by the emission-line gas. By modelling the depolarization effects, we estimate the size of the emission-line gas clouds to be ∼(2.8 ± 1.7) × 10−5 parsec and the amount of thermal material mixed with the synchrotron plasma to be ∼(1.01 ± 0.08) × 106 M⊙ in the lobe of J0945+1737 (which exhibits the most prominent polarization signature in its lobe). The current work demonstrates that the interplay of jets/winds and emission-line gas is most likely responsible for the nature of radio outflows in radio-quiet AGN.

     
    more » « less
  4. Abstract

    Crosslinking is a ubiquitous strategy in polymer engineering to increase the thermomechanical robustness of solid polymers but has been relatively unexplored in the context of π‐conjugated (semiconducting) polymers. Notwithstanding, mechanical stability is key to many envisioned applications of organic electronic devices. For example, the wide‐scale distribution of photovoltaic devices incorporating conjugated polymers may depend on integration with substrates subject to mechanical insult—for example, road surfaces, flooring tiles, and vehicle paint. Here, a four‐armed azide‐based crosslinker (“4Bx”) is used to modify the mechanical properties of a library of semiconducting polymers. Three polymers used in bulk heterojunction solar cells (donors J51 and PTB7‐Th, and acceptor N2200) are selected for detailed investigation. In doing so, it is shown that low loadings of 4Bx can be used to increase the strength (up to 30%), toughness (up to 75%), hardness (up to 25%), and cohesion of crosslinked films. Likewise, crosslinked films show greater physical stability in comparison to non‐crosslinked counterparts (20% vs 90% volume lost after sonication). Finally, the locked‐in morphologies and increased mechanical robustness enable crosslinked solar cells to have greater survivability to four degradation tests: abrasion (using a sponge), direct exposure to chloroform, thermal aging, and accelerated degradation (heat, moisture, and oxygen).

     
    more » « less